Elevated mitogen-activated protein kinase activity in estrogen-nonresponsive human breast cancer cells.
نویسندگان
چکیده
The mitogen-activated protein kinase (MAPK) signal transduction pathway plays an essential role in cell cycle progression and can be activated by many growth factor/mitogen pathways including estrogen. MAPK has also been implicated in ligand-independent activation of estrogen receptor-alpha (ER-alpha). The development of estrogen-independent growth in breast cancer is likely a first step in progression to hormone independence and antiestrogen resistance. We examined MAPK expression and activity in T5-PRF and T5 human breast cancer cells. T5-PRF is an estrogen-nonresponsive cell line developed from T5 cells by chronically depleting the cells of estrogen in long-term culture. MAPK activity measured in vitro was significantly higher (P < 0.05) in T5-PRF compared with T5 cells. Western blot analyses showed increased levels of active dually phosphorylated MAPK in T5-PRF cell extracts compared with T5. The increased activity and expression of MAPK may contribute to the estrogen nonresponsive growth phenotype and ligand-independent activity of ER in T5-PRF cells.
منابع مشابه
Elevated expression of mitogen-activated protein kinase phosphatase 3 in breast tumors: a mechanism of tamoxifen resistance.
Antiestrogen resistance is a major clinical problem in the treatment of breast cancer. Altered growth factor signaling with estrogen receptor (ER)-alpha is associated with the development of resistance. Gene expression profiling was used to identify mitogen-activated protein kinase (MAPK) phosphatase 3 (MKP3) whose expression was correlated with response to the antiestrogen tamoxifen in both pa...
متن کاملInhibition of HER2/neu (erbB-2) and mitogen-activated protein kinases enhances tamoxifen action against HER2-overexpressing, tamoxifen-resistant breast cancer cells.
HER2/neu (erbB-2) overexpression has been causally associated with tamoxifen resistance in human breast cancer cells. Forced expression of HER2 in MCF-7 breast cancer cells resulted in mitogen-activated protein kinase (MAPK) hyperactivity and tamoxifen resistance. Inhibition of HER2 and MAPKs with AG1478 and U0126, respectively, as well as dominant-negative MEK-1/2 constructs restored the inhib...
متن کاملThe cis decoy against the estrogen response element suppresses breast cancer cells via target disrupting c-fos not mitogen-activated protein kinase activity.
Breast cancer, the most common malignancy in women, has been demonstrated to be associated with the steroid hormone estrogen and its receptor (ER), a ligand-activated transcription factor. Therefore, we developed a phosphorothiolate cis-element decoy against the estrogen response element (ERE decoy) to target disruption of ER DNA binding and transcriptional activity. Here, we showed that the ER...
متن کاملIranian crack induces hepatic injury through mitogen-activated protein kinase pathway in the liver of Wistar rat
Objective(s): Iranian crack (IC) is a heroin-based substance manifesting various pathologic side effects. Herein, we aimed to investigate the mechanism of IC-induced liver injuries in Wistar rats. Materials and Methods: Twenty male Wistar rats were randomly divided into two groups: control, and IC (0.9 mg/kg/day/IP, for 30 days). Mitochondrial reactive oxygen species (ROS) production was measur...
متن کاملInhibition of mitogen-activated protein kinase and phosphatidylinositol 3-kinase activity in MCF-7 cells prevents estrogen-induced mitogenesis.
Estrogen acts to promote DNA synthesis in the MCF-7 human breast cancer cell line via its interaction with high levels of estrogen receptor. The primary mode of estrogen action has been considered to be through transcriptional activation of genes containing estrogen response elements, including the immediate early genes c-myc and fos. Recent reports have indicated that estrogen, acting through ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cancer research
دوره 58 18 شماره
صفحات -
تاریخ انتشار 1998